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We study fluctuations around nonequilibrium steady states of some model 
nonlinear chemical systems. A previous result of Nicolis and Prigogine 
states that the mean square fluctuation computed from a master equation 
in the space of internal states of the reacting species is identical to that 
calculated from Einstein's fluctuation formula. Our analysis of fluctuations 
based on that master equation leads with the assumption of local equilibrium 
to a result identical to that obtained from a master equation for the total 
concentration of the reacting species, which is different from the equilibrium 
(Einstein relation) result. Nicolis and Prigogine approximated one term in 
their master equation, and a discussion of this approximation is presented. 
The master equation without this approximation yields at equilibrium 
the result expected on the basis of Einstein's formula. 

KEY WORDS: Fluctuations; nonequilibrium steady states; nonlinear 
chemical kinetics. 

1. I N T R O D U C T I O N  

The analysis o f  f luctuations a round  steady states o f  chemical ly react ing 

systems is convent ional ly  based on a master  equat ion  writ ten in analogy to 
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the macroscopic chemical rate equations. (l-a) In this master equation the 
chemical rate laws are used as transition probabilities in a birth and death 
process for the relevant chemical species and one calculates the joint prob- 
ability distribution in the space of the population of the internal states of the 
reacting species. 

Recently Nicolis (4) (see also Nicolis and Prigogine (5~) has used this 
method for the study of fluctuations of nonlinear chemical systems around 
far-from-equilibrium steady states. In the particular example (4,5~ 

A + M k l > X +  M 

2X k l  E + D (1) 

(reverse reactions neglected) one obtains a master equation of the form 2 

aP(X, O/8t = k l A M P ( Z  - 1, t) - kzAMP(X,  t) 
+ G ( x  + 2)~P(x + 2, t) - G x ~ P ( x ,  t) (2) 

which, in the limit of small fluctuations, can be. approximated by a Fokker-  
Planck equation 

[ k ' A M  ) 8~P(~, t) 
8P(~, T) = 4Xo [seP(r t)] + \ 2k2 + 2X~ at a~ 2 (3) 

where Xo is the steady-state number density of X molecules obtained from 
the macroscopic kinetic equations of the scheme (1), and ~: is defined by 

~ = X - X o  (4) 

The steady-state solution of Eq. (3) then yields the second moment 

( ~ )  = ~ ' ( 0 ~  ~ d~ = kXo  (5) 

This result, which depends on the particular chemical mechanism considered, 
is contrasted by Nicolis (4~ with the result for a linear system. In that case the 
steady-state distribution is known to be of the Poisson form (2~ with 

<~2) = Xo (6) 

According to Nicolis, m the result (5) is unacceptable for systems constrained 
to be in local equilibrium. He argues that under this constraint fluctuations 
should be given by the Einstein formula for fluctuations around equilibrium 

P(~) ~ exp[(3ZS)o/2kB] (7) 

2 Nicolis writes the nonlinear rates in the form k z X ( X -  1) and k2(X + 2)(X + 1); 
for a macroscopic system with a large number of particles the difference is negligible. 
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or its extension to nonequilibrium steady states, in which the second-order 
excess entropy is evaluated around the steady state. This formula (7), which 
Nicolis expects to hold under the local equilibrium assumption, is compatible 
with the result (6) for linear systems but not with the result (5) for nonlinear 
systems. 

In order to take the condition of local equilibrium into account ex- 
plicitly, Nicolis and Prigogine (4,5) suggest that one should work not in the 
space of the number of molecules [where P(~) is calculated], but in the 
"phase space"(4'5) of X, which includes all the internal states of molecules 
X--including their momentum and position. Instead of having X as a stochas- 
tic variable, they introduce a vector F of stochastic variables, where /~] 
denotes the number of molecules X in the state i. The probability distribution 
P(X,  t) is now replaced by another joint probability distribution P(F, t) 
which satisfies the master equation a 

~P(F, t)/~t = ~ B~[P(F~ - 1, F', t) - e (F ,  t)] 
i 

+ .~  A,j[(~i + ~)(Fj + 1)P(F~ + 1, Fj + 1, F', t) 
tp3 

-- F~FsP(F, t)] (8) 

where in both terms on the rhs F' represents the set F from which those 
populations that are explicitly written are excluded. Bi and Aij are rate c o n -  

s t a n t s  which are related to the quantities defined by Nicolis by 

B, = E BjkuFkAFjM (9a) 

A~ s = ~,  A~s~l = Aj~ (9b) 
k l  

(the symbols on the rhs are defined in Refs. 4 and 5). 
In the limit of  small fluctuations Eq. (8) can again be approximated by 

a Fokker Planck differential equation 

OP(f, t)/Ot = 2 ~ A,s(O/OA)[(F,~ + F~~ t)] 
ij 

+ E Ar176176 0fj)P(f, t) (10) 

3 Equation (8) is in the form given by Nicolis. In fact the second term, for i = j, takes the 
form ~ A,(F~ + 2)2P(F~ + 2, F, t) - F~2P(F, t) but the contribution of such terms 
is negligible. Although we take this correction into account later [Eq. (17a)], this has 
n o  bearing on the issues discussed here. 
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where F ~ is the steady-state solution of the deterministic kinetic equation 
[or alternatively, the point of maximum steady-state distribution P~t(F)] 

f = F - F ~ ( 1 1 )  

Nicolis then proceeds by neglecting the last term on the rhs of Eq. (10) 
and solves the resulting approximate Fokker-Planck equation, getting a 
solution for 

in the form 

This leads to 

P~(f~) = (2~-F~O)-l/2 exp(-f~2 /2F~ ~ 

(12) 

(13) 

((f~)2) = F o (14) 

which suggests that the result (6) also holds in this case. * 
Without going into the question of the validity of Einstein's fluctuation 

formula for far-from-equilibrium steady states of nonlinear systems, we expect 
that strict adherence to local equilibrium (that is, assuming that the internal 
state distributions remain practically equilibrium distribution on the chemical 
time scale) should lead to a result identical to that obtained from Eq. (2) or 
(3) [that is, the result (5)]. It is exactly the assumption of local equilibrium 
which allows us to reduce a set of coupled kinetic equations for all the 
different internal states of the chemical species to a single equation for the 
total amount of X, with an averaged rate constant [kl and k~ in Eqs. (2) 
and (3)]. 

First a note on the meaning of local equilibrium in this system is neces- 
sary. Nicolis and Prigogine (4,5) take account of local equilibrium by neglecting 
the contribution of nonreactive collisions to the rate of change of P(F, t), 
Eq. (8). In addition we assume that B~, the rate of formation of species i, and 
~j &jF~Fj, the rate of annihilation of this species, are modified by the 
fast nonreactive collisions in such a way that they do not change the internal 
state distribution. This means 

BIfFs, ~ &jFj independent of i (15) 
J 

This assumption does not influence the procedure which leads to the Prigogine- 
Nicolis result, Eq: (14). We now proceed to show that under this assumption 
Eq. (8) [or alternatively Eq. (10)] actually leads to the result (5). 

To prove (6), one needs a result in the fo rm (f~f~,) = F~~ which yields (6) by 
summing  over ~ and cr and using Y~f~ = ~; ~ F ~  ~ = Xo. This is not  shown by 
Nicolis.C 4~ 
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In what follows we calculate the fluctuations around the steady state 
according to Eq. (8) and show that under the assumption &local equilibrium 
it leads to the same result, Eq. (5), as that obtained from Eq. (2). Thus the 
problem of the discrepancy between the results (5) and (6) is not resolved by 
extending the master equation from the form (27 to that of (8), at least when 
local equilibrium is maintained. - 

2. M E T H O D  OF M O M E N T S  (7) 

Equation (8) can be rewritten in the form 

~P(F, t)/Ot = - ~  T(F, F')P(F', t) 
F '  

where the transition operator is defined by 

(16) 

T(~', F ' )  = 

i / = 1  

z ,3  l = i , j  

i I = i  

The quantity 3(F, F') is 

~(F, F') = I-~ ~, ' ,~,  
l 

and 3~j is the Kronecker delta. 

(17a) 

The first and second moments of the transition operation are sufficient 
for the calculation of fluctuation amplitudes in the limit of small fluctuations. 
These moments are defined by 

MI(F ') -- - ~  T(F, F')(F - F') = - ~  T(F, F')F (18a) 
F F 

M2(F ') = - �89  ~ T(F, F')(F - F') 2 (18b) 
F 

and their calculation is presented in Appendix A. The results are 

M~(F) = B~ - 2~ ~ A~jFj (19) 
l 

(all l) (17b) 
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At steady state F ~ the first moment vanishes 

B, - 2F, ~ ~ A,jFy ~ = 0 (every i) (21) 

This is obtained from the deterministic kinetic equation, m Equations (19) 
and (21) can now be used to calculate the steady-state fluctuation amplitudes 
according to (7,m 

2(M2(F)) + (M*(F)f) + (fM*(F)) = 0 (22) 

In the limit of small fluctuations M 1 and M = can be replaced by the first 
nonvanishing terms in their expansion around F ~ This means replacing 
MI(F) according to 

M,I(F) ~ -(BJF,~ - 2<  0 ~ A,ff~ (23) 
i 

and giving M2(F) its steady-state value, that is, 

M~(F)-+ M~(F ~ = B~,~ + A,jF?F? (24) 

In obtaining Eqs. (23) and (24), the steady-state condition (21) has been used. 
Inserting these values of M 1 and M 2 into Eq. (22), we get 

2B~8~j + 2A~jF~~ ~ = [(BJF~ ~ + (BJFj~ .) 

+ 2 ~,  (Fj~ + F~~ (25) 
Z 

Summing over all i a n d j  and using Eq. (21), we have 

3 ~, B~ = 4 ~ (BdF~~ (26) 
~,j 

Utilizing Eq. (15), and using ~ F~ ~ --- Xo and ~ f ~  = ~, we finally get 

(~2) = �88 (27) 

which is, as anticipated, identical to the result (5) obtained directly from 
Eq. (2). 

3, F O K K E R - P L A N C K  E Q U A T I O N  

The linear approximation (small amplitude of fluctuations) which leads 
to Eq. (25) is the same one used to turn the master equation (8) into the 
Fokker-Planck equation (10). The result (27) thus also should be obtainable 
from (10). To check this, we multiply Eq. (10) b y f f j  and integrate over all 
f ,  using the boundary condition 

[(f,)"JP(f)lr,= ~ -~ o (28) 

This procedure leads again to the same result, Eq. (25). 
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4. CONCLUSIONS 

The results obtained above lead to the conclusion that Nicolis results 
[Ref. 4, Eqs. (25)-(31)] are inconsistent with strict maintenance of local 
equilibrium as expressed by Eq. (15). Obviously the approximation which 
neglects the last term in the reduced Fokker-Planck equation [Ref. 4, Eq. 
(22)] cannot be applied under these conditions. This approximation amounts 
essentially to neglecting correlations between f and f j  (i.e., ( f f j )  = 0 for 
i # j) .  To see why this procedure fails, we return to Eq. (25) and consider 
the special case where A~j = A and B~ = B are independent of the internal 
states. Then f - - ( f 2 ) , f , =  ( f f j ) ,  and F-= F~ ~ are also constants. For 
i = j Eq. (25) yields 

2B + 2 A F  2 = 2 ( B / F ) f  + 4 A F [ f  + ( N  - 1)f'] (29) 

where N is the number of internal states, while for i r j we obtain 

2 A F  2 = 2 ( B / F ) f '  + 4 A F [ f  + ( N -  1)f'] (30) 

In addition, the steady-state equation (21) yields for this case 

B = 2 A F 2 N  (31) 

Equations (29)-(31) are easily solved, with the results 

f = r ( 4 u  - 1)/4N (32a) 

f '  = - F / 4 N  (32b) 

For N - + o o ,  f ' - + O ,  which is consistent with Nicolis' approximation; 
however, 

(~2) = ~ ( f f j )  = N f  + N ( N -  1)f' = �88 = �88 (33) 

as before. The contribution o f f '  to (~2) is, for any N, of the same order as 
that o f f  and is not negligible. 

In order to see that the identity between the results (27) and (5) is not 
accidental, we consider in Appendix B a different example 

A ~1> AT, 3X k2>B (34) 

In this system we obtain for the noise amplitude 

(~2) = ~X0 (35) 

using either the number (of molecules X) space approach or the "phase 
space" approach. 

The results obtained here must lead to one and may lead to both of the 
following two conclusions: (a) Einstein's fluctuation formula is not valid for 
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fluctuations around nonequilibrium steady states even when local equilibrium 
prevails; or (b) a phenomenological master equation of the type (2) [or 
equivalently (8)] does not describe currectly the concentration fluctuations 
which arise from chemical reactions. 

Since no proofs exist for either the validity of Einstein's formula for 
nonequilibrium steady states or for the applicability of the phenomenological 
master equation, it is impossible to decide whether conclusion (a) or (b) is 
correct (or both are correct). It is useful in this context to verify that the 
master equation approach gives the correct fluctuation behavior (as calculated 
from the Einstein relation (6)) at equilibrium. We show this for a general 
one-variable system in Appendix C. This result, while being no definite proof 
for the validity of the master equation approach, tells us that this method 
does give the proper result at equilibrium. 

While we were preparing this paper for publication an article by Kura- 
moto (9) was published in which he addresses himself to the issues discussed 
here. Kuramoto's analysis is based on the generating function method and 
he obtains the result (5) for the special case of constant rates A~j = A and 
Be = B. Here we obtained this result by invoking the far less restrictive local 
equilibrium assumption (15). We gratefully acknowledge the additional 
insight obtained from Kuramoto's work as detailed in Eqs. (32)-(33). 

APPENDIX  A. CALCULATION OF THE M O M E N T S  

First M o m e n t  

Inserting Eq. (17a) into Eq. (18a), we get 

~j 

+ e , ( F '  + + A , , e / e / ( F '  - 1, - Z;) 

= Z 8 , a ,  - + 1;) 

= ~ Bile -- 2 ~ A~jF~'F/I= (A.1) 
e ~j 

where le is a vector with ith element equal to one and all the other elements 
equal to zero. The last equality in (A. 1) results from the symmetry condition 
(9b). Taking the kth term of the vector equation (A.1) and noting that 
(1~)~ = 8~j, we have 

M~J-(F ') = B~ - 2F~ ~,  AkjFj (A.2) 
J 



A Comment on Fluctuations Around Nonequilibrium Steady States 387 

Second M o m e n t  

Inserting Eq. (17a) into Eq. (18b), we obtain [note that the term with 
(F') 2 does not contribute] 

+ ~ ~,[(F'  + 1,) ~ - (F' + l~)F - F(F' + 101 
t 

+ ~, A~j~'Fs'[(F' + L + l j )  ~ - (F '  + 1~ + L.)F'  - F ' ( F '  + 1~ + L)]  
O" 

= ~ B,I~I, + 2 ~ A,jF,'F/(1,1j + 1,1~) (A.3) 

Taking the (kl) matrix element, we have 

2M~(F') = Bk3kz + 2Ak~F~'F(+ 2(j~ AkjFk'F/)3~z 

A P P E N D I X  B. C A L C U L A T I O N  OF F L U C T U A T I O N S  
IN THE  S Y S T E M  (34)  

The "number space" master equation is 

0t (B.1) 

where exp(n 6/Ox) is a displacement operator 

exp(n ~/Ox)f(x) = f(x  + n) (B.2) 

From Eq. (B.1) we obtain by the standard methods (that is, linearized 
moments or linearized Fokker-Planck equation) the mean square fluctuation 

( ~ )  = ( ( x  - Xo) ~) = ~Xo (a .3 )  

In the "phase space" approach x is replaced by the vector F as described 
for the previous example. The master equation for P(F, t) now takes the form 

~P(F,st t) = ~',7, B~[exp(-~F~) - lIP(F, t) 

A~.~ must be symmetric to permutations of any two of its indices. 



388 A. Nitzan and J. Ross 

The moments are now calculated as described in Appendix A [or 
alternatively by expanding the exponentials in Eq. (B.4)(8)]. The results are 

M~I(F) = B~ - 3F, ~ A~j~FjF~ (B.5) 
j/v 

M~(F) �89 + ~ ~ ~, A~z~FzFk ~j + 3 ~, A~jkF~FjFe (B.6) 
l/c k 

At steady state the first moment vanishes, 

B~ - 3F~ ~ ~ A~jkFs~ ~ = 0, i = 1, 2 .... (B.7) 

Equations (B.5) and (B.6) are next inserted into Eq. (22) and the linearization 
procedure which is described after Eq. (22) is performed. This results in the 
equation 

2M~(F ~ = ~ A~(fkL.> + ~, ( f f k )a ,~  (B.8) 
k /r 

where 

Mg(  o) = B, ,j + 3 ~ (B.9) 
k 

and 

A,, = - I , ~ l ~ o  = 6F,~ ~ A~,kF~ + 3 A~z~F~ ~ 3~j (B.10) 

Inserting Eqs. (B.9) and (B. 10) into Eq. (B.8) and summing over all i and 
j results in 

4 ~ B, = 6 ~ (BdF~~ (B.11) 

where Eq. (B.7) has been used. As before, local equilibrium implies 

BJF~ ~ independent of i 

This yields 
(~2) = ;a-Xo (B.12) 

which is identical to the result (B.3). 

A P P E N D I X  C. E Q U I L I B R I U M  F L U C T U A T I O N S  

Here we show that in a general chemical system with one variable x 
which participates in any number of chemical reactions the master equation 
approach yields under equilibrium conditions 

(~2) = Xo (C.1) 
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identical to the result obtained from the Einstein fluctuation formulaJ 6~ As 
in the cases of the nonequilibrium steady states described above, the concen- 
trations of all the chemical components besides x are assumed to be fixed. 
More precisely, the concentrations of all other species fluctuate on a different 
time scale. ~2~ The conditions under which this may be achieved have been 
described by Nicolis and Babloyantz5 2~ However, in the present case we take 
these fixed concentrations to be the equilibrium concentrations of these com- 
ponents. For  these conditions the master equation can be written in the 
general f o r m  

OP(x, t)/Ot = ~ {[exp(-n  O/Ox) -- l lQ~(x )P(x )  
r 

+ [exp(n O/Ox) - 1]R~(x)P(x)} (C.2) 

where n = n(r)  > 0 is the change in the number of molecules x due to the 
reaction r. Q~(x) is the rate of the reaction r in the direction in which x 
increases, while R~(x) is the rate in the reverse direction. At steady state 
(which is here the equilibrium state) detailed balance holds 

Q~(xo) = R~(xo), all r (C.3) 

The moments are found by expanding the exponential operators in Eq. 
(C.2)(s); for the first two moments we have 

M l ( x )  = ~ ,  n(r)[Q~(x) - R~(x)] (C.4) 

M 2 ( x )  = �89 ~ ,  [n(r)]2[Qr(x) + Rr(x)] (C.5) 
T 

The fluctuation amplitude is obtained from Cv 

where 

(~2)  = M2(xo ) /A(xo )  (C.6) 

A(Xo) = - {(O/Ox) [ M  1 (x)]}xo 

= ~ ,  n(r){(O/Ox)[R~(x) - Q~(x)]}xo (C.7) 
r 

Now, the rates Q~ and Rr can be written quite generally in the form 

Qr(x) = A r X %  a >~ 0 (C.8) 

Rr(x) = ar XBr, fl > 0 (C.9) 
Also, it is seen that 

flit - c,~ = n(r)  (C.10) 
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Utilizing Eqs. (C.3) and (C.8)-(C.10), we recast (C.7) in the form 

A(xo) = (1/Xo) ~ [n(r)l 2 Q~(xo) (C. 11) 
T 

But  from Eqs. (C.3) and (C.5) we have 

M2(xo) = ~ [n(r)l 2 Q~(xo) (C. 12) 
T 

and Eqs. (C.6), (C.11), and (C.12) then lead to 

(~:~) = Xo ( c . 1 3 )  

NOTE A D D E D  IN P R O O F  

After submitting this paper for publication we obtained a preprint by 
Nicolis, Allen and Van Nypelseer, in which they reanalyze the problem 
discussed in Refs. 4, 5, 9, and in this paper, and argue that the conclusion 
arrived at by Kuramoto (9~ as well as in the present paper are valid only for. 
"macroscopic"  fluctuations which characterize a system which is strictly at 
local equilibrium. We completely agree with this observation. It is important 
to stress, however, that such fluctuations are not macroscopic in the sense 
that all the systems fluctuate in a coherent fashion. Local fluctuations (which 
decay on the time scale of the macroscopic chemical rates and the macro- 
scopic diffusion rates) may be described within this local equilibrium theory 
(see, e.g., Nitzan, Ortoleva, Deutch, and Ross, J. Chem. Phys., submitted). 
It is our feeling that experiments on chemical fluctuations of the type per- 
formed by Magde, Elson, and Webb [Phys. Rev. Letters 29, 705 (1972)] 
and by Feher and Weissman [Proe. Nat. Acad. Sci. 70, 870 (1973)] if ex- 
tended to nonequilibrium steady states would be amenable to interpretation 
based on a completely local equilibrium theory. 
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